翻訳と辞書
Words near each other
・ Cochranella mache
・ Cochranella megistra
・ Cochranella nola
・ Cochranella ocellifera
・ Cochranella orejuela
・ Cochranella punctulata
・ Cochranella ramirezi
・ Cochranella resplendens
・ Cochranella riveroi
・ Cochranella saxiscandens
・ Cochranella spiculata
・ Cochranella susatamai
・ Cochranella tangarana
・ Cochranella xanthocheridia
・ Cochrane–Africatown USA Bridge
Cochrane–Orcutt estimation
・ Cochranites
・ Cochrans Falls
・ Cochranton, Pennsylvania
・ Cochranville, Pennsylvania
・ Cochran–Armitage test for trend
・ Cochran–Mantel–Haenszel statistics
・ Cochu's blue tetra
・ Cochuah
・ Cochylidia
・ Cochylidia altivaga
・ Cochylidia contumescens
・ Cochylidia heydeniana
・ Cochylidia implicitana
・ Cochylidia liui


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cochrane–Orcutt estimation : ウィキペディア英語版
Cochrane–Orcutt estimation
Cochrane–Orcutt estimation is a procedure in econometrics, which adjusts a linear model for serial correlation in the error term. It is named after statisticians Donald Cochrane and Guy Orcutt.
==Theory==
Consider the model
:y_t = \alpha + X_t \beta+\varepsilon_t,\,
where y_ is the value of the dependent variable of interest at time ''t'', \beta is a column vector of coefficients to be estimated, X_ is a row vector of explanatory variables at time ''t'', and \varepsilon_t is the error term at time ''t''.
If it is found via the Durbin–Watson statistic that the error term is serially correlated over time, then standard statistical inference as normally applied to regressions is invalid because standard errors are estimated with bias. To avoid this problem, the residuals must be modeled. If the process generating the residuals is found to be a stationary first-order autoregressive structure, \varepsilon_t =\rho \varepsilon_+e_t,\ |\rho| <1 , with the errors being white noise, then the Cochrane–Orcutt procedure can be used to transform the model by taking a quasi-difference:
:y_t - \rho y_ = \alpha(1-\rho)+\beta(X_t - \rho X_) + e_t. \,
In this specification the error terms are white noise, so statistical inference is valid. Then the sum of squared residuals (the sum of squared estimates of e_t^2) is minimized with respect to (\alpha,\beta), conditional on \rho.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cochrane–Orcutt estimation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.